Linear Algebra II

06/05/2014, Monday, 18:30-21:30

You are NOT allowed to use any type of calculators.

1 (15 pts)
Gram-Schmidt process

Consider the vector space \mathbb{R}^{3} with the inner product

$$
\langle x, y\rangle=x^{T} y .
$$

Apply the Gram-Schmidt process to transform the basis

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

into an orthonormal basis.

2 (15 pts)

Cayley-Hamilton theorem

Consider the matrix

$$
M=\left[\begin{array}{rrr}
1 & 1 & -1 \\
-1 & 1 & 1 \\
0 & 2 & 0
\end{array}\right]
$$

By using Cayley-Hamilton theorem, show that $M^{k}=2^{k-2} M^{2}$ for any $k \geqslant 2$.
$3(12+3=15 \mathrm{pts})$
Singular value decomposition

Consider the matrix

$$
M=\left[\begin{array}{cc}
2 & 1 \\
1 & 2 \\
2 \sqrt{2} & 2 \sqrt{2}
\end{array}\right]
$$

(a) Find a singular value decomposition for M.
(b) Find the best rank 1 approximation of M.

Let $J \in \mathbb{R}^{n \times n}$ be a skew-symmetric matrix, that is $J+J^{T}=0$.
(a) Show that the real part of any eigenvalue of J must be zero.
(b) Show that J is singular if n is an odd number.
(c) Show that J is unitarily diagonalizable.
(d) Show that if λ is an eigenvalue of J then $\sqrt{-\lambda^{2}}$ is a singular value of J.
(e) Show that if σ is a singular value of J then $i \sigma$ is an eigenvalue of J.
$5 \quad(7+8=15 \mathrm{pts})$
(a) Consider the function

$$
f(x, y, z)=-\frac{1}{4}\left(\frac{1}{x^{4}}+\frac{1}{y^{4}}+\frac{1}{y^{4}}\right)+y z-x-2 y-2 z .
$$

Show that $(1,1,1)$ is a stationary point and determine whether this stationary point is local minimum/maximum or saddle point.
(b) Let

$$
M=\left[\begin{array}{ccc}
a+1 & a & 0 \\
a & a+1 & a \\
0 & a & a
\end{array}\right]
$$

where a is a real number. Determine all values of a for which M is
(i) positive definite.
(ii) negative definite.
$6(2+3+10=15 \mathrm{pts})$

Consider the matrix

$$
\left[\begin{array}{rrr}
0 & 0 & -1 \\
-2 & 1 & -1 \\
1 & 0 & 2
\end{array}\right] .
$$

(a) Find its eigenvalues.
(b) Is it diagonalizable? Why?
(c) Put it into the Jordan canonical form.

10 pts free

